Два игрока, Петя и Ваня, играют в такую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может убрать из одной из куч один камень или уменьшить количество камней в куче в два раза (если количество камней в куче нечётно, остаётся на 1 камень больше, чем убирается). Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (5, 9), (3, 9), (6, 8), (6, 5).
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не более 30. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 30 или меньше камней.
В начальный момент в первой куче было 15 камней, во второй куче – S камней, S > 15.
Перечислите как можно больше различных значений S, при которых Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого такого значения S укажите ведущий к выигрышу первый ход Пети.
Необходимо записать не только ответ, но и подробное обоснование!

37
0
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки
Быстрое выполнение от 2 часов
Проверка работы на плагиат

Похожие вопросы

Интересные статьи из справочника

Раскрываем различия между дипломом и магистерской диссертацией.
2531 +68
0
Форму набора каждый выбирает сам – по возможностям или по желанию. Спешим обрадовать: у коммерции тоже есть плюсы.
6196 +63
1
Все секреты SAT и ACT.
583 +59
0
Где лучше всего студентам живется?
6093 +45
1
Сегодня вы студент, а завтра уже нет. Как вернуться к учебе после отчисления?
6853 +35
0
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 28 789 авторам
Первые отклики появятся уже в течение 10 минут