543
31 Июл 2018 в 10:28 31.07.2018 в 10:28

Как вычислить определитель матрицы второго порядка

В прошлый раз мы рассмотрели понятие определителя матрицы. Для вычисления определителей существуют различные правила. Например, определитель матрицы FF первого порядка — элемент f11:F=f11f_{11}: |F|= f_{11}. Рассмотрим вычисление определителя второго порядка.

Правило нахождения определителя второго порядка

Для того чтобы вычислить определитель второго порядка необходимо из произведения элементов главной диагонали вычесть произведение элементов второй (побочной) диагонали.

В общем случае нахождение определителя выглядит следующим образом:

B=b11b12b21b22=b11b22b12b21|B|=\begin{vmatrix}\color{green}{b_{11}}&\color{purple}{b_{12}}\\\color{purple}{b_{21}}&\color{green}{b_{22}}\end{vmatrix}=\color{green}{b_{11}}\cdot\color{green}{b_{22}}-\color{purple}{b_{12}}\cdot\color{purple}{b_{21}}.

Схема вычисления определителя второго порядка выглядит следующим образом:

Как вычислить определитель матрицы второго порядка.png

Алгоритм нахождения определителя второго порядка:

  1. Определяем порядок определителя (подробнее о порядке определителя можно узнать в теме «Что такое определитель матрицы»).
  2. Если порядок определителя = 2, то находим произведение элементов главной диагонали, и произведение элементов второй (побочной) диагонали (с понятием главной и побочной диагонали можно ознакомиться в теме «Основные типы матриц»).
  3. Находим разность произведения элементов главной диагонали и произведения элементов второй (побочной диагонали).
Пример 1

Вычислить определитель второго порядка Δ=15432\Delta=\begin{vmatrix}-15&4\\3&-2\end{vmatrix}.

Определитель второго порядка равен

Δ=15432=15(2)43=3012=18\Delta=\begin{vmatrix}-15&4\\3&-2\end{vmatrix}=-15\cdot(-2)-4\cdot3=30-12=18.

Пример 2

Вычислить определитель второго порядка Δ=cosαsinαsinαcosα\Delta=\begin{vmatrix}-\cos\alpha&-\sin\alpha\\-\sin\alpha&-\cos\alpha\end{vmatrix}.

Определитель второго порядка равен Δ=cosαsinαsinαcosα=cosα(cosα)(sinα(sinα))=cos2αsin2α=cos(2α)\Delta=\begin{vmatrix}-\cos\alpha&-\sin\alpha\\-\sin\alpha&-\cos\alpha\end{vmatrix}=-cos\alpha\cdot(-cos\alpha)-(-sin\alpha\cdot(-sin\alpha))=cos^{2}\alpha-sin^{2}\alpha=cos(2\alpha).

Автор статьи
+1
-0
Нет комментариев
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки
Быстрое выполнение от 2 часов
Проверка работы на плагиат

Интересные статьи за сегодня

В жизни каждого студента случается момент, когда он задумывается, «где я повернул не туда?».
1141 +118
0
Пришла пора получше изучить свои права как студента.
664 +100
0
Форму набора каждый выбирает сам – по возможностям или по желанию. Спешим обрадовать: у коммерции тоже есть плюсы.
2792 +52
0
Сегодня вы студент, а завтра уже нет. Как вернуться к учебе после отчисления?
4803 +37
0
Где лучше всего студентам живется?
3509 +34
1
Хотите выполнять заказы?
Стать автором
Хотите заказать работу?
Разместить заказ
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 30 715 авторам
Первые отклики появятся уже в течение 10 минут