Высшая математика Екатеринбург Уральский институт ГПС Контрольная работа №2 Вариант №41 (20.05.01, 20.03.01)

Раздел
Математические дисциплины
Просмотров
161
Покупок
0
Антиплагиат
Не указан
Размещена
26 Ноя 2020 в 04:16
ВУЗ
Уральский институт Государственной противопожарной службы
Курс
1 курс
Стоимость
249 ₽
Демо-файлы   
1
png
Задание Кр2 В41 Задание Кр2 В41
48 Кбайт 48 Кбайт
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
doc
Готовое КР2 В41
403.5 Кбайт 249 ₽
Описание

!!! Если понадобятся другие работы из этого ВУЗа - пишите в личку !!!


«Уральский институт Государственной противопожарной службы

Министерства Российской Федерации по делам гражданской обороны,

чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»


ВЫСШАЯ МАТЕМАТИКА

Методические указания и варианты контрольной работы № 2

для слушателей 1 года обучения факультета заочного обучения, переподготовки и повышения квалификации и факультета управления и комплексной безопасности

Уральского института ГПС МЧС России


Специальность 20.05.01 Пожарная безопасность

Направление подготовки 20.03.01 Техносферная безопасность


Екатеринбург

2020


Высшая математика [Текст] : Методические указания и варианты контрольной работы № 2

для слушателей 1 года обучения факультета заочного обучения, переподготовки и повышения квалификации

и факультета управления и комплексной безопасности Уральского института ГПС МЧС России.

Специальность 20.05.01 Пожарная безопасность, направление подготовки 20.03.01 Техносферная безопасность.

– Екатеринбург : ФГБОУ ВО Уральский институт ГПС МЧС России, 2020. – 53 с.


Составители:

Худякова С. А., доцент кафедры математики и информатики Уральского института ГПС МЧС России, кандидат педагогических наук;

Шпаньков А.В., старший преподаватель кафедры математики и информатики Уральского института ГПС МЧС России;

Якупова Л. В., преподаватель кафедры математики и информатики Уральского института ГПС МЧС России.


Контрольная работа №2

Вариант №41

Задания №№: 17, 33, 67, 83, 117, 133, 167, 194


1-25. Найдите геометрическое место точек, изображающих комплексное число, удовлетворяющих условию.

17 Re(z + 5)2 <= – 2.


26-50. Записать комплексные числа z1 и z2 в тригонометрической и показательной формах. Найти значения выражений в тригонометрической и показательной формах:

, , , , , .

33 z1 = – 3 + Корень(3)i, z2 = 4i.


51-75. Найти и построить область определения функции двух переменных.

67 .


76-100. Найти частные производные функции z = f(x, y).

83 a) z = (x2 – 2y2x) • cosx;

b) z = y2 – x2 lnz;

c) z = x2 + xy + y2, x = sin^2 t, y = cos^2 t.


101-125. Исследовать функцию двух переменных на наличие экстремума.

117 z = – 2x2 + 2xy – y2 – 8x + 5.


126-150. Найти общее (частное) решение дифференциального уравнения первого порядка.

133 a) y` – y = 2ex, y(0) = 0;

b) (8x + 6y + 1) dx – (12y – 6x – 1) dy = 0;

c) xy` + y = xy2 lnx.


151-175. Найти общее решение дифференциальных уравнений.

167 a) y`` = 14 sin2x + x2 – 8x;

b) y``– 18y`/x = 0;

c) y``– 18y`y = 0.


151-175. Найти частное решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.

194 y``– 3y` + 2y = x2 + x, y(0) = 0, y`(0) = 0.

Вам подходит эта работа?
Похожие работы
Другие работы автора
Темы журнала
Показать ещё
Прямой эфир