Понижение порядка матрицы

Ранее мы рассматривали различные методы вычисления определителей высших порядков, одним из которых является метод понижения порядка определителя. Остановимся на нем более подробно.
Перед изучением данной темы рекомендуется повторить свойства определителей.

Необходимо помнить, что определитель 1-го порядка — это число.

Вычисление определителя по данному методу сводится к следующим действиям:

  1. В некоторой строке (или столбце) при помощи свойств определителей делаем все элементы кроме одного равными нулю.
  2. Раскладываем определитель по элементам этой строки (или столбца). В результате чего получаем определитель меньшего порядка.
  3. В случае если порядок полученного определителя больше единицы, то действия №1 и №2 повторяем. В противном случае вычисления заканчиваются.

Рассмотрим примеры вычисления определителя методом понижения порядка.

Пример 1

Найти определитель 2111131132231111\begin{vmatrix}2&-1&1&-1\\1&3&-1&-1\\3&-2&2&-3\\1&1&-1&1\end{vmatrix}.

Прибавим к строке №1 строку №4, умноженную на -2:

2111131132231111=0333131132231111\begin{vmatrix}2&-1&1&-1\\1&3&-1&-1\\3&-2&2&-3\\1&1&-1&1\end{vmatrix}=\begin{vmatrix}0&-3&3&-3\\1&3&-1&-1\\3&-2&2&-3\\1&1&-1&1\end{vmatrix}.

Прибавим к строке №2 строку №4, умноженную на -1:

0333131132231111=0333020232231111\begin{vmatrix}0&-3&3&-3\\1&3&-1&-1\\3&-2&2&-3\\1&1&-1&1\end{vmatrix}=\begin{vmatrix}0&-3&3&-3\\0&2&0&-2\\3&-2&2&-3\\1&1&-1&1\end{vmatrix}.

Прибавим к строке №3 строку №4, умноженную на -3:

0333020232231111=0333020205561111\begin{vmatrix}0&-3&3&-3\\0&2&0&-2\\3&-2&2&-3\\1&1&-1&1\end{vmatrix}=\begin{vmatrix}0&-3&3&-3\\0&2&0&-2\\0&-5&5&-6\\1&1&-1&1\end{vmatrix}.

Разложим определитель по столбцу №1:

0333020205561111=1(1)4+1333202556=1(1)5333202556=333202556\begin{vmatrix}0&-3&3&-3\\0&2&0&-2\\0&-5&5&-6\\1&1&-1&1\end{vmatrix}=1\cdot(-1)^{4+1}\begin{vmatrix}-3&3&-3\\2&0&-2\\-5&5&-6\end{vmatrix}=1\cdot(-1)^{5}\begin{vmatrix}-3&3&-3\\2&0&-2\\-5&5&-6\end{vmatrix}=-\begin{vmatrix}-3&3&-3\\2&0&-2\\-5&5&-6\end{vmatrix}.

Вынесем из строки №1 множитель 3:

333202556=3111202556-\begin{vmatrix}-3&3&-3\\2&0&-2\\-5&5&-6\end{vmatrix}=-3\begin{vmatrix}-1&1&-1\\2&0&-2\\-5&5&-6\end{vmatrix}.

Вынесем из строки №2 множитель 2:

3111202556=32111101556=6111101556-3\begin{vmatrix}-1&1&-1\\2&0&-2\\-5&5&-6\end{vmatrix}=-3\cdot2\begin{vmatrix}-1&1&-1\\1&0&-1\\-5&5&-6\end{vmatrix}=-6\begin{vmatrix}-1&1&-1\\1&0&-1\\-5&5&-6\end{vmatrix}.

Прибавим к строке №1 строку №2, умноженную на 1:

6111101556=6012101556-6\begin{vmatrix}-1&1&-1\\1&0&-1\\-5&5&-6\end{vmatrix}=-6\begin{vmatrix}0&1&-2\\1&0&-1\\-5&5&-6\end{vmatrix}.

Прибавим к строке №3 строку №2, умноженную на 5:

6012101556=60121010511-6\begin{vmatrix}0&1&-2\\1&0&-1\\-5&5&-6\end{vmatrix}=-6\begin{vmatrix}0&1&-2\\1&0&-1\\0&5&-11\end{vmatrix}.

Разложим определитель по столбцу №1:

60121010511=61(1)2+112511=61(1)312511=612511-6\begin{vmatrix}0&1&-2\\1&0&-1\\0&5&-11\end{vmatrix}=-6\cdot1\cdot(-1)^{2+1}\begin{vmatrix}1&-2\\5&-11\end{vmatrix}=-6\cdot1\cdot (-1)^{3}\begin{vmatrix}1&-2\\5&-11\end{vmatrix}=6\begin{vmatrix}1&-2\\5&-11\end{vmatrix}.

Прибавим к строке №2 строку №1, умноженную на -5:

612511=612016\begin{vmatrix}1&-2\\5&-11\end{vmatrix}=6\begin{vmatrix}1&-2\\0&-1\end{vmatrix}.

Разложим определитель по столбцу №1:

61201=61(1)1+1(1)=6(1)2(1)=66\begin{vmatrix}1&-2\\0&-1\end{vmatrix}=6\cdot1\cdot(-1)^{1+1}\cdot(-1)=6\cdot(-1)^{2}\cdot(-1)=-6.

Пример 2

Найти определитель

5722216004050202020646115554101146302030\begin{vmatrix}-5&-7&-2&2&-2&16\\0&0&4&0&-5&0\\2&0&-2&0&2&0\\6&4&6&-1&15&-5\\5&-4&10&1&14&6\\3&0&-2&0&3&0\end{vmatrix}.

Прибавим к строке №1 строку №5, умноженную на -2:

5722216004050202020646115554101146302030=151220304004050202020646115554101146302030\begin{vmatrix}-5&-7&-2&2&-2&16\\0&0&4&0&-5&0\\2&0&-2&0&2&0\\6&4&6&-1&15&-5\\5&-4&10&1&14&6\\3&0&-2&0&3&0\end{vmatrix}=\begin{vmatrix}-15&1&-22&0&-30&4\\0&0&4&0&-5&0\\2&0&-2&0&2&0\\6&4&6&-1&15&-5\\5&-4&10&1&14&6\\3&0&-2&0&3&0\end{vmatrix}.

Прибавим к строке №5 строку №4, умноженную на 1:

151220304004050202020646115554101146302030=1512203040040502020206461155110160291302030\begin{vmatrix}-15&1&-22&0&-30&4\\0&0&4&0&-5&0\\2&0&-2&0&2&0\\6&4&6&-1&15&-5\\5&-4&10&1&14&6\\3&0&-2&0&3&0\end{vmatrix}=\begin{vmatrix}-15&1&-22&0&-30&4\\0&0&4&0&-5&0\\2&0&-2&0&2&0\\6&4&6&-1&15&-5\\11&0&16&0&29&1\\3&0&-2&0&3&0\end{vmatrix}.

Разложить определитель по столбцу №4:

1512203040040502020206461155110160291302030=(1)(1)4+41512230400450202201101629130230=(1)(1)81512230400450202201101629130230=1512230400450202201101629130230\begin{vmatrix}-15&1&-22&0&-30&4\\0&0&4&0&-5&0\\2&0&-2&0&2&0\\6&4&6&-1&15&-5\\11&0&16&0&29&1\\3&0&-2&0&3&0\end{vmatrix}=(-1)\cdot(-1)^{4+4}\begin{vmatrix}-15&1&-22&-30&4\\0&0&4&-5&0\\2&0&-2&2&0\\11&0&16&29&1\\3&0&-2&3&0\end{vmatrix}=(-1)\cdot(-1)^{8}\begin{vmatrix}-15&1&-22&-30&4\\0&0&4&-5&0\\2&0&-2&2&0\\11&0&16&29&1\\3&0&-2&3&0\end{vmatrix}=-\begin{vmatrix}-15&1&-22&-30&4\\0&0&4&-5&0\\2&0&-2&2&0\\11&0&16&29&1\\3&0&-2&3&0\end{vmatrix}.

Разложим определитель по столбцу №2:

1512230400450202201101629130230=11(1)1+20450222011162913230=11(1)30450222011162913230=0450222011162913230-\begin{vmatrix}-15&1&-22&-30&4\\0&0&4&-5&0\\2&0&-2&2&0\\11&0&16&29&1\\3&0&-2&3&0\end{vmatrix}=-1\cdot1\cdot(-1)^{1+2}\begin{vmatrix}0&4&-5&0\\2&-2&2&0\\11&16&29&1\\3&-2&3&0\end{vmatrix}=-1\cdot1\cdot(-1)^{3}\begin{vmatrix}0&4&-5&0\\2&-2&2&0\\11&16&29&1\\3&-2&3&0\end{vmatrix}=\begin{vmatrix}0&4&-5&0\\2&-2&2&0\\11&16&29&1\\3&-2&3&0\end{vmatrix}.

Разложим определитель по столбцу №4:

0450222011162913230=1(1)3+4045222323=1(1)7045222323=045222323\begin{vmatrix}0&4&-5&0\\2&-2&2&0\\11&16&29&1\\3&-2&3&0\end{vmatrix}=1\cdot(-1)^{3+4}\begin{vmatrix}0&4&-5\\2&-2&2\\3&-2&3\end{vmatrix}=1\cdot(-1)^{7}\begin{vmatrix}0&4&-5\\2&-2&2\\3&-2&3\end{vmatrix}=-\begin{vmatrix}0&4&-5\\2&-2&2\\3&-2&3\end{vmatrix}.

Вынесем из строки №2 множитель 2:

045222323=2045111323-\begin{vmatrix}0&4&-5\\2&-2&2\\3&-2&3\end{vmatrix}=-2\begin{vmatrix}0&4&-5\\1&-1&1\\3&-2&3\end{vmatrix}.

Прибавим к строке №3 строку №2, умноженную на -3:

2045111323=2045111010-2\begin{vmatrix}0&4&-5\\1&-1&1\\3&-2&3\end{vmatrix}=-2\begin{vmatrix}0&4&-5\\1&-1&1\\0&1&0\end{vmatrix}.

Разложим определитель по столбцу №1:

2045111010=21(1)2+14510=21(1)34510=24510-2\begin{vmatrix}0&4&-5\\1&-1&1\\0&1&0\end{vmatrix}=-2\cdot1\cdot(-1)^{2+1}\begin{vmatrix}4&-5\\1&0\end{vmatrix}=-2\cdot1\cdot(-1)^{3}\begin{vmatrix}4&-5\\1&0\end{vmatrix}=2\begin{vmatrix}4&-5\\1&0\end{vmatrix}.

Разложим определитель по строке №2:

24510=21(1)2+1(5)=21(1)3(5)=2(1)(5)=102\begin{vmatrix}4&-5\\1&0\end{vmatrix}=2\cdot1\cdot(-1)^{2+1}\cdot(-5)=2\cdot1\cdot(-1)^{3}\cdot(-5)=2\cdot(-1)\cdot(-5)=10.

Данный метод может применяться для вычисления определителей любого порядка.

Автор статьи
10 Авг 2018 в 14:39
7 652
+9
-0
Комментарии
Нет комментариев
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Гарантированные бесплатные доработки
Быстрое выполнение от 2 часов
Проверка работы на плагиат

Интересные статьи за сегодня

Напишем уникальную работу
Скидка 10%
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 34 822 авторам
Первые отклики появятся уже в течение 10 минут
Показать ещё
Показать ещё
Отвечай на вопросы, зарабатывай баллы и трать их на призы.
Подробнее
Прямой эфир